1(a). Matt finds out some information about the bonding in some compounds and the ions that they produce when they dissolve in water.

He dissolves the compounds in water and tests their pH values.

The table shows his results.

Compound	Bonding in compound	When dissolved in water		
		Positive ion	Negative ion	pH
sodium hydroxide	ionic	sodium	hydroxide	14
calcium bromide	ionic	calcium	bromide	7
ammonia	covalent	ammonium	hydroxide	9
hydrogen chloride	covalent	hydrogen	chloride	1
ethanoic acid	covalent	hydrogen	ethanoate	3
calcium hydroxide	ionic	calcium	hydroxide	12
citric acid	covalent	hydrogen	citrate	3

Which compounds in the table are acidic?
Put a tick (?) in the boxes next to each correct answer.

(b). Matt looks at the information and puts forward this idea.

```
I can identify the alkalis from their pH values.
I think all alkalis are ionic and one of the ions they produce is always the same.
```

Does the data support Matt's ideas?

Explain your reasoning.
\qquad
\qquad
\qquad
\qquad
(c). Draw straight lines to show the state of pure ethanoic acid and pure citric acid at room temperature.

2. A scientist works in a quality control laboratory for a chemical company.

The company makes acids for use in cleaning products.

The scientist tests some samples of another four dilute acids, C, D, E and F.

He uses the same volume of dilute acid each time.

He measures the pH and does titrations using sodium hydroxide solution.

He uses the same concentration of sodium hydroxide solution in each titration.

His results are shown in the table below.

Acid	pH	Mean volume of sodium hydroxide solution used in titration $\left(\mathrm{cm}^{3}\right)$
C	5	12.0
D	1	18.5
E	4	25.0
F	1	12.0

The scientist looks at his results.

He wants to know whether each acid is a strong acid or a weak acid.

He wants to compare the concentrations of the acids.

What conclusions can you make from the results about the strength and concentration of each of the four acids, $\mathrm{C}, \mathrm{D}, \mathrm{E}$ and F ?
3. Sodium hydroxide and sodium carbonate both neutralise acids to make salts.

Name the salts made when the following neutralisation reactions take place.

Acid	Alkali	Salt
sulfuric acid	sodium hydroxide	
nitric acid	sodium carbonate	

4. The acid in vinegar reacts with sodium hydroxide.

In the reaction, hydrogen ions react with hydroxide ions.

Complete the equation for this reaction by filling in the boxes.

Choose formulae from the list.

5. Alex adds dilute hydrochloric acid to solid calcium carbonate.

He sees that the reaction makes bubbles of gas.

Complete the word and symbol equations for the reaction by filling in the boxes.

$\square+2 \mathrm{HCl} \quad \rightarrow \quad \mathrm{CaCl}_{2}+\square+\square+\square$
6. Fred investigates the acid $\mathrm{CH}_{3} \mathrm{COOH}$.
(i) Which part of the formula shows you that $\mathrm{CH}_{3} \mathrm{COOH}$ is a carboxylic acid?

Put a ring around the correct answer.

$$
\mathrm{CH}_{3}
$$

CO
OH
COOH
(ii) The acid is a weak acid. What does this mean?

Put a tick $(\boldsymbol{\checkmark})$ in the box next to the correct answer.

Its formula contains carbon, hydrogen and oxygen. \square

It is more dilute than acids such as hydrochloric acid.

It is less reactive than acids such as hydrochloric acid.
\square
\square

It is more runny than acids such as hydrochloric acid. \square
(iii) Fred compares solutions of this weak acid with a strong acid of the same concentration.

How do the pH values of the two solutions compare?

Put a tick $(\boldsymbol{\checkmark})$ in the box next to the correct answer.

The weak acid has a higher pH .
\square
The weak acid has the same pH .
\square
The weak acid has a lower pH .

The weak acid has a much lower pH .

7(a). Acid rain contains a dilute solution of sulfuric acid.

Acid rain causes some lakes to become too acidic, killing fish and other wildlife.

Water companies can treat the lakes with calcium hydroxide to neutralise acidity.

Which ion causes the acidity in the lake?

Put a ring around the correct answer.
$\mathrm{SO}_{4}{ }^{2-}$
H^{+}
OH^{-}
O^{2-}
$\mathrm{SO}_{3}{ }^{2-}$
(b). Which ion in calcium hydroxide reacts to neutralise the acidity in the lake?

Put a ring around the correct answer.
$\begin{array}{lllll}\mathrm{Ca}^{2+} & \mathrm{H}^{+} & \mathrm{OH}^{-} & \mathrm{O}^{2-} & \mathrm{H}^{-}\end{array}$

8(a). Eve has two beakers of dilute acid.

One contains dilute hydrochloric acid, one contains dilute sulfuric acid.

Complete the boxes to show which ions are in each acid.

Choose from this list. You may use each symbol once, more than once or not at all.
H_{2}
OH^{-}
Cl^{-}
ClO^{-}
$\mathbf{S}^{\mathbf{2 -}}$
$\mathrm{SO}_{4}{ }^{2-}$

(b). Eve does tests A, B, C and D on each acid.

1 test pH using a pH meter
2 add magnesium ribbon
3 add a few drops of dilute silver nitrate (see data sheet page 2)
4 add a few drops of dilute barium chloride (see data sheet page 2)
(i) Two tests give the same result with both hydrochloric acid and sulfuric acid.

Which two tests give the same result?

What will she see when she does each of these tests?
test \qquad
result \qquad

```
result
```

\qquad
(ii) Two tests give a different result with hydrochloric acid and sulfuric acid.

Which two tests give a different result?

What will she see when she does each test?
test \qquad
result for each acid \qquad
\qquad
test \qquad
result for each acid \qquad
\qquad
(c). Both dilute hydrochloric acid and dilute sulfuric acid are neutralised when they react with dilute sodium hydroxide.

Complete the table to show the name and formula of the salt that is made from each acid.

Acid	Salt formed with dilute sodium hydroxide	
	Name	Formula
dilute hydrochloric acid		
dilute sulfuric acid		

9. What is the name of the salt that is made when zinc reacts with hydrochloric acid?
10.

Sulfuric acid is used in car batteries.

Mia has a sample of car battery acid that is diluted to $\frac{1}{100}$ of its original concentration.
She measures the concentration of this acid by titration.

This equation shows what happens when pure sulfuric acid is mixed with water.
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I}) \rightarrow 2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$

Explain how this equation shows that sulfuric acid is a strong acid.

END OF QUESTION PAPER

Question		Answer/Indicative content	Marks	Guidance
1	a	Sodium hydroxide \square Calcium bromide \square Ammonia \square hydrogen chloride \downarrow ethanoic acid \downarrow calcium hydroxide \square citric acid \downarrow	1	Need all three (1) Examiner's Comments Most know which substances in the list were acidic.
	b	all (solutions of) alkalis have pH greater than $7 /$ all alkalis produce hydroxide ions (in solution); (dry) ammonia is covalent;	2	Ignore 'yes' or 'no', look at explanations Accept 'ammonia is not ionic' Examiner's Comments The main issue that caused candidates difficulties was that many thought that calcium bromide was an alkali. This led them to incorrectly answer that alkalis have a pH of ' 7 and over'. However, many correctly stated that ammonia is a covalently bonded alkali, whereas the others are ionic.
	c	\square solid ethanoic acid liquid \square citric acid gas	2	Examiner's Comments The states of ethanoic and citric acid were not generally known. Few thought that either of them were solid.
		Total	5	

Question		Answer/ndicative content	Marks	Guidance
				$\begin{array}{l}\text { The most able candidates showed an easy } \\ \text { understanding of the relationship between } \\ \text { acid strength and pH, and of concentration } \\ \text { and the amount of sodium hydroxide used } \\ \text { in a titration. Others had great dificulty in } \\ \text { coping with the idea that an acid could be } \\ \text { both strong and dilute, or weak and } \\ \text { concentrated, and tried to combine them in } \\ \text { some way. Answers such as "D and F are } \\ \text { both strong acids because they have a pH } \\ \text { of 1, but D is the stronger of the two } \\ \text { because it uses more sodium hydroxide" } \\ \text { were not uncommon. }\end{array}$
This question also exposed other				
misunderstandings. Many candidates				
suggested that the smaller the amount of				
alkali used, the more concentrated the acid				
would be. Also, and unsurprisingly, many				
felt that low pH numbers indicated weak				
acidity. In several cases examiners				
suspected that candidates understood the				
material, but that the candidates'				
expression was ambiguous to the point				
where examiners were not able to award				
the mark with confidence.				

| Question | | Answer/ndicative content | Marks | Guidance |
| :--- | :--- | :--- | :--- | :---: | :--- |
| 5 | | CaCO_{3} (1)
 Calcium chloride (1)
 Correct formula and names: Carbon
 dioxide + water
 $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ (1) | If extra numbers are added to incorrectly
 balance the equation, maximum of 2 marks
 can be awarded. | |

Mark Scheme

Question			Answer/Indicative content	Marks	Guidance
6		i	COOH	1	Examiner's Comments Almost all candidates realised that the carboxylic acid group is - COOH .
		ii	its formula contains carbon, hydrogen and oxygen it is more dilute than acids such as hydrochloric it is less reactive than acids such as hydrochloric it is more runny than acids such as hydrochloric	1	Examiner's Comments The majority of candidates knew that weak acids are less reactive than strong acids. The most common mistake was to suggest that weak acids are more dilute than strong acids.
		iii	a weak acid has a higher pH - a weak acid has the same pH - a weak acid has a lower pH a weak acid has a much lower pH \square	1	Examiner's Comments Most candidates knew that weak acids have a higher pH than strong acids. The most common misconception was, unsurprisingly, that they have a lower pH .
			Total	3	
7	a		H^{+}	1	Examiner's Comments About a third of candidates knew that H^{+} ions cause acidity.
	b		$\mathrm{OH}^{\text {? }}$	1	Examiner's Comments About a third of candidates knew that OH^{-} ions neutralise acidity. These statistics imply that the ions in acids and alkalis are not well known by candidates.
			Total	2	

Question			Answer/Indicative content	Marks	Guidance
8	a		hydrochloric acid: H^{+}and $\mathrm{Cl}^{?}(1)$ sulfuric acid: H^{+}and $\mathrm{SO}_{4}{ }^{2 ?}$ (1)	2	ignore $\mathrm{OH}^{?} / \mathrm{HCl}$ (in LHS box) $/ \mathrm{H}_{2} \mathrm{SO}_{4}$ (in RHS box) Examiner's Comments About half of the candidate gained some marks. Usually, this was for correctly selecting the ions in hydrochloric acid. Common incorrect selections for sulphuric acid included H_{2} and $\mathrm{S}^{2 ?}$.
	b	i	Test A and B; (1) (both) give a low value for $\mathrm{pH} / \mathrm{pH}$ below 7; (1) (both) react with magnesium ribbon / ribbon 'disappears' / fizz / see a gas; (1)	3	Accept 'hydrogen forms' Examiner's Comments Both parts were poorly answered. Candidates did not seem to know that the pH of all acids are similar or that they would both react with magnesium. Those who did select the correct tests in the correct places usually gained all three marks.
		ii	(Test C and D) because (test C silver nitrate) white precipitate (with HCl or chloride); (1) (test D barium chloride) white precipitate (with $\mathrm{H}_{2} \mathrm{SO}_{4}$ or sulfate); (1) no precipitate with 'other' acid stated for at least one of the tests / use of the word 'only'; (1)	3	e.g. 'test C gives white ppt with HCl only' $=$ (2) Examiner's Comments For correctly describing the changes they would see. However, over 75% of candidates failed to score in both question parts.

Question		Answer/Indicative content	Marks	Guidance
	C	sodium chloride AND NaCl ; sodium sulfate $\mathrm{AND} \mathrm{Na}_{2} \mathrm{SO}_{4}$;	2	Allow (1) if both names correct OR if both formulae are correct Examiner's Comments Most candidates gained one mark, either for giving the correct name and formula for sodium chloride or for naming both salts correctly. The formula for sodium sulfate was less well known.
		Total	10	
9		zinc chloride	1	Allow ZnCl_{2} Ignore incorrect formula if name is correct. Allow zinc chloride and hydrogen (1) Do not allow if other incorrect additional products are named. Examiner's Comments Almost all correctly identified zinc chloride.
		Total	1	
10		(The arrow shows that) the acid is fully dissociated/ionised / the reaction goes to completion AW / there is no equilibrium sign \checkmark	$\begin{gathered} 1 \text { (AO } \\ 1.1) \end{gathered}$	Examiner's Comments Some candidates recognised the importance of complete dissociation linked to acid strength. The word 'strong' was misinterpreted, with many candidates focussing on the idea that sulfuric acid is dibasic and so produces more hydrogen ions per molecule.
		Total	1	

